Five-Direction Occlusion Filling with Five Layer Parallel Two-Stage Pipeline for Stereo Matching with Sub-Pixel Disparity Map Estimation

Sensors (Basel). 2022 Nov 8;22(22):8605. doi: 10.3390/s22228605.

Abstract

Binocular stereoscopic matching is an essential method in computer vision, imitating human binocular technology to obtain distance information. Among plentiful stereo matching algorithms, Semi-Global Matching (SGM) is recognized as one of the most popular vision algorithms due to its relatively low power consumption and high accuracy, resulting in many excellent SGM-based hardware accelerators. However, vision algorithms, including SGM, are still somewhat inaccurate in actual long-range applications. Therefore, this paper proposes a disparity improvement strategy based on subpixel interpolation and disparity optimization post-processing using an area optimization strategy, hardware-friendly divider, split look-up table, and the clock alignment multi-directional disparity occlusion filling, and depth acquisition based on floating-point operations. The hardware architecture based on optimization algorithms is on the Stratix-IV platform. It consumes about 5.6 K LUTs, 12.8 K registers, and 2.5 M bits of on-chip memory. Meanwhile, the non-occlusion error rate of only 4.61% is about 1% better than the state-of-the-art works in the KITTI2015 dataset. The maximum working frequency can reach up to 98.28 MHz for the 640 × 480 resolution video and 128 disparity range with the power dissipation of 1.459 W and 320 frames per second processing speed.

Keywords: FPGA; disparity refinement; multi-direction occlusion filling; semi-global matching; single precision floating point; subpixel interpolation.