Increased Plasma L-Arginine Levels and L-Arginine/ADMA Ratios after Twelve Weeks of Omega-3 Fatty Acid Supplementation in Amateur Male Endurance Runners

Nutrients. 2022 Nov 10;14(22):4749. doi: 10.3390/nu14224749.

Abstract

It is not fully understood how supplementation with omega-3 fatty acids affects the metabolism of amino acids required for the bioavailability/synthesis of NO, i.e., L-arginine (L-arg), asymmetric dimethylarginine (ADMA), their metabolites, and the L-arg/ADMA ratio and their impact on running economy (RE) in runners. Thus, 26 male amateur endurance runners completed a twelve-week study in which they were divided into two supplemented groups: the OMEGA group (n = 14; 2234 mg and 916 mg of eicosapentaenoic and docosahexaenoic acid daily) or the MCT group (n = 12; 4000 mg of medium-chain triglycerides daily). At the same time, all participants followed an endurance training program. Before and after the 12-week intervention, blood was collected from participants at two time points (at rest and immediately post-exercise) to determine EPA and DHA in red blood cells (RBCs) and plasma levels of L-arg, ADMA, and their metabolites. RBC EPA and DHA significantly increased in the OMEGA group (p < 0.001), which was related to the resting increase in L-arg (p = 0.001) and in the L-arg/ADMA ratio (p = 0.005) with no changes in the MCT group. No differences were found in post-exercise amino acid levels. A total of 12 weeks of omega-3 fatty acid supplementation at a dose of 2234 mg of EPA and 916 mg of DHA daily increased levels of L-arg and the L-arg/ADMA ratio, which indirectly indicates increased bioavailability/NO synthesis. However, these changes were not associated with improved RE in male amateur endurance runners.

Keywords: ADMA; L-arginine; endurance runners; nitric oxide; omega-3 fatty acids; running economy.

MeSH terms

  • Arginine / metabolism
  • Dietary Supplements
  • Docosahexaenoic Acids
  • Fatty Acids, Omega-3*
  • Humans
  • Male

Substances

  • Fatty Acids, Omega-3
  • N,N-dimethylarginine
  • Arginine
  • Docosahexaenoic Acids