Strengthening Mechanism for the Mechanical Properties of Cement-Based Materials after Internal Nano-SiO2 Production

Nanomaterials (Basel). 2022 Nov 17;12(22):4047. doi: 10.3390/nano12224047.

Abstract

This study focuses on overcoming the agglomeration issue of nano-SiO2 powder in cement, facilitating the strengthening mechanism of cement-based materials. A nano-SiO2 precursor solution (NSPS) was added to cement-based materials to replace nano-SiO2 powder. The influencing laws of the alkalinity and dosage of the NSPS on the mechanical properties of cement were investigated. Further, the strengthening mechanism of the mechanical properties of cement-based materials after internal nano-SiO2 production was analysed. The results show that (1) when the alkalinity of the precursor solution is a weak acid (pH = 6), the compressive strength of cement-based materials after internal nano-SiO2 production is 25%~36% higher than that of pure cement-based materials and 16%~22% higher than that of cement-based materials with silica fume; (2) when the solid content of SiO2 in the current displacement solution is about 0.16% of the cement mass, the compressive strength of the prepared cement-based material is the highest. With the continuous increase in the solid content of SiO2 in the precursor solution, the compressive strength of cement-based materials after internal nano-SiO2 production decreases but is always greater than the compressive strength of the cement-based material mixed with nano-SiO2 micro powder. According to a microstructural analysis, nano-SiO2 particles that precipitate from the precursor solution can facilitate the hydration process of cement and enrich the gel products formed on the cement particle surface. In addition, new network structures among cement particles are formed, and precipitated nano-SiO2 particles fill in the spaces among these cement particles as crystal nuclei to connect the cement particles more tightly and compact the cement-based materials. This reinforces the mechanical properties of cement-based materials.

Keywords: cement-based materials; compressive strength; internal production; nano-SiO2 precursor solution (NSPS); strengthening mechanism.