Adsorption Characteristics of Dimethylated Arsenicals on Iron Oxide-Modified Rice Husk Biochar

Toxics. 2022 Nov 17;10(11):703. doi: 10.3390/toxics10110703.

Abstract

In this study, the adsorption characteristics of dimethylated arsenicals to rice husk biochar (BC) and Fe/biochar composite (FeBC) were assessed through isothermal adsorption experiments and X-ray absorption spectroscopy analysis. The maximal adsorption capacities (qm) of inorganic arsenate, calculated using the Langmuir isotherm equation, were 1.28 and 6.32 mg/g for BC and FeBC, respectively. Moreover, dimethylated arsenicals did not adsorb to BC at all, and in the case of FeBC, qm values of dimethylarsinic acid (DMA(V)), dimethylmonothioarsinic acid (DMMTA(V)), and dimethyldithioarsinic acid (DMDTA(V)) were calculated to be 7.08, 0.43, and 0.28 mg/g, respectively. This was due to the formation of iron oxide (i.e., two-line ferrihydrite) on the surface of BC. Linear combination fitting using As K-edge X-ray absorption near edge structure spectra confirmed that all chemical forms of dimethylated arsenicals adsorbed on the two-line ferrihydrite were DMA(V). Thus, FeBC could retain highly mobile and toxic arsenicals such as DMMTA(V) and DMDTA(V)) in the environment, and transform them into DMA(V) with relatively low toxicity.

Keywords: X-ray absorption spectroscopy; adsorption isotherm; dimethyldithioarsinic acid; dimethylmonothioarsinic acid; linear combination fitting.