Molecular Epidemiological Evidence Implicates Cattle as a Primary Reservoir of Campylobacter jejuni Infecting People via Contaminated Chickens

Pathogens. 2022 Nov 16;11(11):1366. doi: 10.3390/pathogens11111366.

Abstract

The study aimed to determine the relative contribution of cattle to the burden of illness in a model agroecosystem with high rates of human campylobacteriosis (≥ 115 cases/100 K), and high densities of cattle, including large numbers of cattle housed in confined feeding operations (i.e., in southwestern Alberta, Canada). To accomplish this, a large-scale molecular epidemiological analysis of Campylobacter jejuni circulating within the study location was completed. In excess of 8000 isolates of C. jejuni from people (n = 2548 isolates), chickens (n = 1849 isolates), cattle (n = 2921 isolates), and water (n = 771 isolates) were subtyped. In contrast to previous studies, the source attribution estimates of clinical cases attributable to cattle vastly exceeded those attributed to chicken (i.e., three- to six-fold). Moreover, cattle were often colonized by C. jejuni (51%) and shed the bacterium in their feces. A large proportion of study isolates were found in subtypes primarily associated with cattle (46%), including subtypes infecting people and those associated with chickens (19%). The implication of cattle as a primary amplifying reservoir of C. jejuni subtypes in circulation in the study location is supported by the strong cattle association with subtypes that were found in chickens and in people, a lack of evidence indicating the foodborne transmission of C. jejuni from beef and dairy, and the large number of cattle and the substantial quantities of untreated manure containing C. jejuni cells. Importantly, the evidence implicated cattle as a source of C. jejuni infecting people through a transmission pathway from cattle to people via the consumption of chicken. This has implications for reducing the burden of campylobacteriosis in the study location and elsewhere.

Keywords: CGF40; comparative genomic fingerprinting; one health; public health; source attribution; subtypes.