Influence of Post Heat Treatment Condition on Corrosion Behavior of 18Ni300 Maraging Steel Manufactured by Laser Powder Bed Fusion

Micromachines (Basel). 2022 Nov 15;13(11):1977. doi: 10.3390/mi13111977.

Abstract

Laser powder bed fusion (LPBF) is a promising additive-manufacturing process for metallic materials. It has the advantage of flexibility in product design, such that various mechanical parts can be fabricated. However, because metal parts are built-up in a layer-by-layer manner, the material fabricated by LPBF has an anisotropic microstructure, which is important for the design of materials. In this study, the corrosion resistance of 18Ni300 maraging steel (MS) fabricated by LPBF was explored considering the building direction. Furthermore, the effects of heat treatment and aging on the microstructure and corrosion resistance were investigated. Sub-grain cells formed by rapid cooling in LPBF improve the corrosion resistance of MS. As a result, the as-built MS has the highest corrosion resistance. However, the sub-grain cells are eliminated by heat treatment or aging, which causes the deterioration of corrosion resistance. In the case of 18Ni300 MS, the cylindrical sub-grain cells are formed and aligned along the heat dissipation direction, which is similar to the building direction; thus, a significant anisotropy in corrosion resistance is found in the as-built MS. However, such anisotropy in corrosion resistance is diminished by heat treatment and aging, which eliminates the sub-grain cells.

Keywords: anisotropy; corrosion behavior; laser powder bed fusion; maraging steel; post heat treatment.