Bacterial Communities in Various Parts of Air-Conditioning Units in 17 Japanese Houses

Microorganisms. 2022 Nov 13;10(11):2246. doi: 10.3390/microorganisms10112246.

Abstract

HVAC systems have a significant impact on the indoor environment, and microbial contamination in HVAC systems has a significant effect on the indoor air quality. In this study, to gain a better understanding of the microbial contamination inside ACs, we used NGS to analyze the 16S rRNA gene of bacteria adhering to AC filters, cooling coils, fans, and air outlet surfaces. The five phyla in terms of the highest relative abundance were Proteobacteria, Firmicutes, Actinobacteria, Cyanobacteria, and Bacteroidetes. The surface of an AC filter provides a history of indoor airborne bacterial contamination, and of the 10 bacterial genera we detected with the highest abundance (in the following order: Pseudomonas > Staphylococcus > Paracoccus > Corynebacterium > Acinetobacter > Streptococcus > Methylobacterium > Enhydrobacter > Sphingomonas > Actinotignum) on the filter surface, the top 6 genera were Gram-negative bacteria. Furthermore, the seventh-most abundant genus adhering to the filter surface (Methylobacterium) was the second-most abundant genus on the cooling coil and fan, and the ninth-most abundant genus on the air filter (Sphingomonas) was the third-most abundant genus on the cooling coil. Various factors impact the bacterial flora inside AC units, including the location of the house, AC unit usage, and occupant activity.

Keywords: 16S rRNA gene; air conditioner; air filter; air outlet; bacteria; cooling coil; fan; next-generation sequencing; residential building.