Wettability effect on oil recovery using rock-structured microfluidics

Lab Chip. 2022 Dec 6;22(24):4974-4983. doi: 10.1039/d1lc01115d.

Abstract

Surface wettability has a crucial impact on drop splashing, emulsion dynamics, slip flow for drag reduction, fluid-fluid displacement, and various microfluidic applications. Targeting enhanced oil recovery (EOR) applications, we experimentally investigate the effect of matrix wettability on the invasion morphology and sweep efficiency of viscous oil displaced by different aqueous floods using microfluidics, whose porous network mimics a sandstone structure. For comparison, systematic experiments of the same oil-flood pair are done in both hydrophilic and hydrophobic microfluidic chips. The results show that the hydrophilic microfluidic rock has a remarkable increase in oil recovery by a factor of ≈1.44, compared to the hydrophobic case. In addition, we observe a more pronounced lateral growth of the displacing pattern of aqueous flood for the hydrophilic surface. Finally, we quantitatively explain the increasing factor in the recovery rate and finger width for the hydrophilic vs. hydrophobic rock-liked porous networks by incorporating the contact angle into a scaling analysis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Microfluidics*