Is the Zero-P Spacer Suitable for 3-Level Anterior Cervical Discectomy and Fusion Surgery in Terms of Sagittal Alignment Reconstruction: A Comparison Study with Traditional Plate and Cage System

Brain Sci. 2022 Nov 19;12(11):1583. doi: 10.3390/brainsci12111583.

Abstract

The Zero-P spacer was primarily developed aiming to reduce the morbidity associated with the traditional anterior cervical plate. During the past decade, many authors have reported the use of Zero-P spacers for anterior cervical discectomy and fusion (ACDF) of one or two segments. Nevertheless, there is still a paucity of knowledge on the safety and feasibility of using Zero-P spacers for 3-level fixation. The objective of this study was to investigate the clinical and radiological outcomes, with a focus on the sagittal alignment reconstruction of 3-level ACDF surgery using Zero-P spacers versus those using a traditional plate and cage system. From Sep 2013 to Aug 2016, a total of 44 patients who received 3-level ACDF surgery due to cervical spondylotic myelopathy were recruited. The Zero-P spacer was used in 23 patients (group ZP) and the traditional plate and cage system in 21 (group PC). Clinical outcomes were analyzed by Neck Disability Index (NDI) and Japanese Orthopedic Association (JOA) scores, and dysphagia was evaluated using the Bazaz score. Radiological outcomes, including fusion rate, adjacent segment degeneration (ASD), and especially changes in cervical sagittal alignment, were analyzed. The NDI and JOA scores did not differ significantly between the two groups postoperatively (p > 0.05); however, there was significantly less dysphagia in patients using Zero-P spacers at the 3- and 6-month follow-up (p < 0.05). At the 24-month follow-up, the fusion rate and ASD were similar between the two groups (p > 0.05). Interestingly, patients using Zero-P spacers had a significantly lower postoperative C2-7 Cobb angle and fused segment Cobb angle, compared to those using a traditional plate and cage system (p < 0.05); meanwhile, the fused segment disc wedge was also found to be significantly smaller in patients using Zero-P spacers after surgery (p < 0.05). Moreover, we further divided patients into subgroups according to their cervical lordosis. In patients with a preoperative C2-7 Cobb angle ≤ 10°, significantly less cervical and local lordosis, as well as disc wedge, were seen in group ZP after surgery (p < 0.05), while in others with a preoperative C2-7 Cobb angle > 10°, no significant difference in postoperative changes of the cervical sagittal alignment was seen between group ZP and group PC (p > 0.05). Zero-P spacers used in 3-level ACDF surgery could provide equivalent clinical outcomes and a lower rate of postoperative dysphagia, compared to the traditional plate and cage system. However, our results showed that it was inferior to the cervical plate in terms of sagittal alignment reconstruction for 3-level fixation. We recommend applying Zero-P spacers for 3-level ACDF in patients with good preoperative cervical lordosis (C2-7 Cobb angle > 10°), in order to restore and maintain physiological curvature of the cervical spine postoperatively.

Keywords: Zero-P spacer; anterior cervical discectomy and fusion; cervical curvature; cervical spine; sagittal alignment.

Grants and funding

This research received no external funding.