Results of the performance test for quality assessment of personal radiation dosimetry services including the influence of the dosimeter readout frequency

Sci Rep. 2022 Nov 22;12(1):20133. doi: 10.1038/s41598-022-23942-y.

Abstract

This study was to determine the significance of factors considered for the measurement accuracy of personal dosimeter in dosimetry services such as dosimetry service, irradiation category, years of use and readout frequency. The investigation included management information questionnaire, on-site visit and blind test. The blind test with random selected personal badge was used in inter-comparison of eight dosimetry services, and the test results followed ANSI/HPS N13.11 criteria. This study also analyzed the measurement deviations if they felt in the criteria of ICRP 75 or not. One-way ANOVA tests were used to analyze the significant difference of the measurement deviations in different dosimetry services, irradiation categories, and years of use. Simple linear-regression test was performed for the significance of the prediction model between measurement deviations and readout frequencies. All visited dosimetry services followed the proper statue of basic management and passed the performance check of the tolerance level. The average deviations corresponding to category I, category II deep dose, and category II shallow dose were 6.08%, 9.49%, and 10.41% respectively. There had significant differences of measurement deviation in different dosimetry services (p < 0.0001) and irradiation categories (p = 0.016) but no significant difference in years of use (p = 0.498). There was no significance in the linear-regression model between measurement deviation and badge readout frequencies. Based on the regular calibration of the personal dosimeter, the deviation of the measured value is mainly affected by different dosimetry services and irradiation categories; and there shows no significant influence by years of use and readout frequency.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Analysis of Variance
  • Calibration
  • Radiation Dosimeters*
  • Radiometry*

Substances

  • P 498