Two O-Methyltransferases from Phylogenetically Unrelated Cow Parsley (Anthriscus sylvestris) and Hinoki-Asunaro (Thujopsis dolabrata var. hondae) as a Signature of Lineage-Specific Evolution in Lignan Biosynthesis

Plant Cell Physiol. 2023 Feb 16;64(1):124-147. doi: 10.1093/pcp/pcac164.

Abstract

O-Methyltransferases (OMTs) play important roles in antitumor lignan biosynthesis. To date, six OMTs catalyzing the methylation of dibenzylbutyrolactone lignans as biosynthetic precursors of antitumor lignans have been identified. However, there is still no systematic understanding of the diversity and regularity of the biosynthetic mechanisms among various plant lineages. Herein, we report the characterization of two OMTs from Anthriscus sylvestris and Thujopsis dolabrata var. hondae [designated as AsSecoNorYatein (SNY) OMT and TdSNYOMT] together with the six known OMTs to evaluate their diversity and regularity. Although A. sylvestris 5-O-methylthujaplicatin (SecoNorYatein) and 4-O-demethylyatein (NorYatein) OMT (AsSNYOMT) and TdSNYOMT accept 5-O-methylthujaplicatin and 4-O-demethylyatein as substrates, phylogenetic analysis indicated that these two OMTs shared low amino acid sequence identity, 33.8%, indicating a signature of parallel evolution. The OMTs and the six previously identified OMTs were found to be diverse in terms of their substrate specificity, regioselectivity and amino acid sequence identity, indicating independent evolution in each plant species. Meanwhile, two-entropy analysis detected four amino acid residues as being specifically acquired by dibenzylbutyrolactone lignan OMTs. Site-directed mutation of AsSNYOMT indicated that two of them contributed specifically to 5-O-methylthujaplicatin methylation. The results provide a new example of parallel evolution and the diversity and regularity of OMTs in plant secondary (specialized) metabolism.

Keywords: Anthriscus sylvestris; Thujopsis dolabrata; Lignan; OMT; Parallel evolution; Podophyllotoxin; Yatein.

MeSH terms

  • Animals
  • Cattle
  • Lignans*
  • Methylation
  • Methyltransferases* / metabolism
  • Petroselinum / metabolism
  • Phylogeny
  • Substrate Specificity

Substances

  • Methyltransferases
  • Lignans