Specification of neuronal subtypes in the spiral ganglion begins prior to birth in the mouse

Proc Natl Acad Sci U S A. 2022 Nov 29;119(48):e2203935119. doi: 10.1073/pnas.2203935119. Epub 2022 Nov 21.

Abstract

The afferent innervation of the cochlea is comprised of spiral ganglion neurons (SGNs), which are characterized into four subtypes (Type 1A, B, and C and Type 2). However, little is known about the factors and/or processes that determine each subtype. Here, we present a transcriptional analysis of approximately 5,500 single murine SGNs collected across four developmental time points. All four subtypes are transcriptionally identifiable prior to the onset of coordinated spontaneous activity, indicating that the initial specification process is under genetic control. Trajectory analysis indicates that SGNs initially split into two precursor types (Type 1A/2 and Type 1B/C), followed by subsequent splits to give rise to four transcriptionally distinct subtypes. Differential gene expression, pseudotime, and regulon analyses were used to identify candidate transcription factors which may regulate the subtypes specification process. These results provide insights into SGN development and comprise a transcriptional atlas of SGN maturation across the prenatal period.

Keywords: auditory; cochlea; hearing; neuronal subgroups; single-cell RNASeq.

Publication types

  • Research Support, N.I.H., Intramural

MeSH terms

  • Animals
  • Cochlea / metabolism
  • Female
  • Mice
  • Neurons* / metabolism
  • Pregnancy
  • Spiral Ganglion* / metabolism