(BO)2 -Doped Tetrathia[7]helicene: A Configurationally Stable Blue Emitter

Angew Chem Int Ed Engl. 2023 Jan 26;62(5):e202215468. doi: 10.1002/anie.202215468. Epub 2022 Dec 20.

Abstract

Helicenes combine two central themes in chemistry: extended π-conjugation and chirality. Hetero-atom doping preserves both characteristics and allows modulation of the electronic structure of a helicene. Herein, we report the (BO)2 -doped tetrathia[7]helicene 1, which was prepared from 2-methoxy-3,3'-bithiophene in four steps. 1 is formally derived by substituting two (Mes)B-O moieties in place of (H)C=C(H) fragments in two benzene rings of the parent tetrathia[7]helicene. X-ray crystallography revealed a dihedral angle of 50.26(9)° between the two terminal thiophene rings. The (P)-/(M)-1 enantiomers were separated by chiral HPLC and are configurationally stable at room temperature. The experimentally determined enantiomerization barrier of 27.4±0.1 kcal mol-1 is lower than that of tetrathia[7]helicene (39.4±0.1 kcal mol-1 ). The circular dichroism spectra of (P)- and (M)-1 show a perfect mirror-image relationship. 1 is a blue emitter (λem =411 nm) with a photoluminescence quantum efficiency of ΦPL =6 % (cf. tetrathia[7]helicene: λem ≈405 nm, ΦPL =5 %).

Keywords: Boron; Chirality; Doping; Helicenes; Thiophenes.