A trans-omics assessment of gene-gene interaction in early-stage NSCLC

Mol Oncol. 2023 Jan;17(1):173-187. doi: 10.1002/1878-0261.13345. Epub 2022 Dec 5.

Abstract

Epigenome-wide gene-gene (G × G) interactions associated with non-small-cell lung cancer (NSCLC) survival may provide insights into molecular mechanisms and therapeutic targets. Hence, we proposed a three-step analytic strategy to identify significant and robust G × G interactions that are relevant to NSCLC survival. In the first step, among 49 billion pairs of DNA methylation probes, we identified 175 775 G × G interactions with PBonferroni ≤ 0.05 in the discovery phase of epigenomic analysis; among them, 15 534 were confirmed with P ≤ 0.05 in the validation phase. In the second step, we further performed a functional validation for these G × G interactions at the gene expression level by way of a two-phase (discovery and validation) transcriptomic analysis, and confirmed 25 significant G × G interactions enriched in the 6p21.33 and 6p22.1 regions. In the third step, we identified two G × G interactions using the trans-omics analysis, which had significant (P ≤ 0.05) epigenetic cis-regulation of transcription and robust G × G interactions at both the epigenetic and transcriptional levels. These interactions were cg14391855 × cg23937960 (βinteraction = 0.018, P = 1.87 × 10-12 ), which mapped to RELA × HLA-G (βinteraction = 0.218, P = 8.82 × 10-11 ) and cg08872738 × cg27077312 (βinteraction = -0.010, P = 1.16 × 10-11 ), which mapped to TUBA1B × TOMM40 (βinteraction =-0.250, P = 3.83 × 10-10 ). A trans-omics mediation analysis revealed that 20.3% of epigenetic effects on NSCLC survival were significantly (P = 0.034) mediated through transcriptional expression. These statistically significant trans-omics G × G interactions can also discriminate patients with high risk of mortality. In summary, we identified two G × G interactions at both the epigenetic and transcriptional levels, and our findings may provide potential clues for precision treatment of NSCLC.

Keywords: G × G interactions; NSCLC; overall survival; prognosis; trans-omics.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Carcinoma, Non-Small-Cell Lung* / drug therapy
  • DNA Methylation / genetics
  • Epigenome
  • Humans
  • Lung Neoplasms* / metabolism
  • Small Cell Lung Carcinoma* / genetics