Electroencephalography for Early Detection of Alzheimer's Disease in Subjective Cognitive Decline

Dement Neurocogn Disord. 2022 Oct;21(4):126-137. doi: 10.12779/dnd.2022.21.4.126. Epub 2022 Oct 25.

Abstract

Background and purpose: Early detection of subjective cognitive decline (SCD) due to Alzheimer's disease (AD) is important for clinical research and effective prevention and management. This study examined if quantitative electroencephalography (qEEG) could be used for early detection of AD in SCD.

Methods: Participants with SCD from 6 dementia clinics in Korea were enrolled. 18F-florbetaben brain amyloid positron emission tomography (PET) was conducted for all the participants. qEEG was performed to measure power spectrum and source cortical activity.

Results: The present study included 95 participants aged over 65 years, including 26 amyloid PET (+) and 69 amyloid PET (-). In participants with amyloid PET (+), relative power at delta band was higher in frontal (p=0.025), parietal (p=0.005), and occipital (p=0.022) areas even after adjusting for age, sex, and education. Source activities of alpha 1 band were significantly decreased in the bilateral fusiform and inferior temporal areas, whereas those of delta band were increased in the bilateral cuneus, pericalcarine, lingual, lateral occipital, precuneus, posterior cingulate, and isthmus areas. There were increased connections between bilateral precuneus areas but decreased connections between left rostral middle frontal area and bilateral frontal poles at delta band in participants with amyloid PET (+) showed. At alpha 1 band, there were decreased connections between bilateral entorhinal areas after adjusting for covariates.

Conclusions: SCD participants with amyloid PET (+) showed increased delta and decreased alpha 1 activity. qEEG is a potential means for predicting amyloid pathology in SCD. Further longitudinal studies are needed to confirm these findings.

Keywords: Alzheimer Disease; Amyloid; Cognitive Dysfunction; EEG; Positron-Emission Tomography.