Deciphering environmental factors and defense response of rice genotypes against sheath blight disease

Physiol Mol Plant Pathol. 2022 Nov:122:101916. doi: 10.1016/j.pmpp.2022.101916.

Abstract

Sheath blight (ShB) is one of the most serious diseases in rice, leading to severe yield losses globally. In our study, we evaluated a total of 63 rice genotypes for resistance against sheath blight disease by artificial inoculation over two seasons under field conditions and studied the weather parameters associated with disease incidence. Based on two years of testing, 23 genotypes were found moderately resistant, 38 were moderately susceptible, and 2 exhibited a susceptible reaction to sheath blight disease. Among the specific four genotypes (IC283139, IC283041, IC283038, and IC283023) of the moderately resistant group exhibited less disease reaction in comparison with check variety Tetep. Further, the correlation of percent disease index (PDI) with weather parameters revealed negative associations between PDI and maximum temperature, minimum temperature, low rainfall and the positive association with maximum relative humidity (RH) suggest that very low temperature or high precipitation might have a negative impact on pathogen establishment. In addition, the sheath blight-linked SSRs were assessed using distance and model-based approaches, results of both the models revealed that genotypes distinguished the resistant population from the susceptible one. From the output of two years of principal component analysis, two genotypes from each group of moderately resistant, moderately susceptible and susceptible were studied for their biochemical reaction against the sheath blight pathogen. The biochemical study revealed that the accumulation of defense and antioxidant enzymes, namely, polyphenol oxidase, peroxidase, total phenol, phenylalanine ammonia-lyase, catalase, and superoxide dismutase, were higher in moderately resistant genotypes, but was observed to be lower in moderately susceptible and susceptible genotypes. The statistical analysis revealed the enzyme activities (defense and antioxidant) exhibited a strong negative correlation with area under the disease progress curve (AUDPC) and influence of weather parameter RH. This demonstrates that the environment factor RH plays a major role in imparting the resistance mechanism by decreasing the enzymes activities and increasing PDI. This study found that the identified novel resistant genotype (IC283139) with purple stem base demonstrated improved resistance against sheath blight infection through a defense response and the use of antioxidant machinery.

Keywords: Antioxidants; Disease score; Enzymatic activity; Pearson correlation; Principal component analysis; Rhizoctonia solani; Rice germplasm.