Covalently Interlayer-Confined Organic-Inorganic Heterostructures for Aqueous Potassium Ion Supercapacitors

Small. 2023 Jan;19(4):e2204275. doi: 10.1002/smll.202204275. Epub 2022 Nov 20.

Abstract

Artificial assembly of organic-inorganic heterostructures for electrochemical energy storage at the molecular level is promising, but remains a great challenge. Here, a covalently interlayer-confined organic (polyaniline [PANI])-inorganic (MoS2 ) hybrid with a dual charge-storage mechanism is developed for boosting the reaction kinetics of supercapacitors. Systematic characterizations reveal that PANI induces a partial phase transition from the 2H to 1T phases of MoS2 , expands the interlayer spacing of MoS2 , and increases the hydrophilicity. More in-depth insights from the synchrotron radiation-based X-ray technique illustrate that the covalent grafting of PANI to MoS2 induces the formation of MoN bonds and unsaturated Mo sites, leading to increased active sites. Theoretical analysis reveals that the covalent assembly facilitates cross-layer electron transfer and decreases the diffusion barrier of K+ ions, which favors reaction kinetics. The resultant hybrid material exhibits high specific capacitance and good rate capability. This design provides an effective strategy to develop organic-inorganic heterostructures for superior K-ion storage. The K-ion storage mechanism concerning the reversible insertion/extraction upon charge/discharge is revealed through ex situ X-ray photoelectron spectroscopy.

Keywords: K-ion storage; covalently interlayer-confinement; molecular-scale assembly; nanoarchitectonics; organic-inorganic heterostructures.