Driver behavior indices from large-scale fleet telematics data as surrogate safety measures

Accid Anal Prev. 2023 Jan:179:106879. doi: 10.1016/j.aap.2022.106879. Epub 2022 Nov 16.

Abstract

Large-scale telematics data enable a high-resolution inference of road network's safety conditions and driver behavior. Although many researchers have investigated how to define meaningful safety surrogates and crash predictors from telematics, no comprehensive study analyzes the driver behavior derived from large-scale telematics data and relates them to crash data and the road networks in metropolitan cities. This study extracts driver behavior indices (e.g., speed, speed variation, hard braking rate, and hard acceleration rate) from large-scale telematics data, collected from 4000 vehicles in New York City five boroughs. These indices are compared to collision frequencies and collision rates at the street level. Moderate correlations were found between the safety surrogate measures and collision rates, summarized as follows: (i) When normalizing crash frequencies with traffic volume, using a traffic AADT model, safety-critical regions almost remain the same. (ii) The correlation magnitude of hard braking and hard acceleration varies by road types: hard braking clusters are more indicative of higher collision rates on highways, whereas hard acceleration is a stronger hazard indicator on non-highway urban roads. (iii) Locations with higher travel times coincide with locations of high crash incidence on non-highway roads. (iv) However, speeding on highways is indicative of collision risks. After establishing the spatial correlation between the driver behavior indices and crash data, two prototype safety metrics are proposed: speed corridor maps and hard braking and hard acceleration hot-spots. Overall, this paper shows that data-driven network screening enabled by telematics has great potential to advance our understanding of road safety assessment.

Keywords: Collisions data; Hard acceleration; Hard braking; Safety surrogate measures; Smart cities; Speed; Telematics.

MeSH terms

  • Accidents, Traffic* / prevention & control
  • Cities
  • Humans
  • New York City
  • Travel*