Characterisation of PfCZIF1 and PfCZIF2 in Plasmodium falciparum asexual stages

Int J Parasitol. 2023 Jan;53(1):27-41. doi: 10.1016/j.ijpara.2022.09.008. Epub 2022 Nov 15.

Abstract

Plasmodium falciparum exerts strong temporal control of gene expression across its lifecycle. Proteins expressed exclusively during late schizogony of blood stages, for example, often have a role in facilitating merozoite invasion of the host red blood cell (RBC), through merozoite development, egress, invasion or early establishment of infection in the RBC. Here, we characterise P. falciparum C3H1 zinc finger 1 (PfCZIF1, Pf3D7_1468400) and P. falciparum C3H1 zinc finger 2 (PfCZIF2, Pf3D7_0818100) which we identified as the only C3H1-type zinc finger proteins with peak expression at schizogony. Previous studies reported that antibodies against PfCZIF1 inhibit merozoite invasion, suggesting this protein may have a potential role during RBC invasion. We show using C-terminal truncations and gene knockouts of each of Pfczif1 and Pfczif2 that neither are essential for blood stage growth. However, they could not both be knocked out simultaneously, suggesting that at least one is needed for parasite growth in vitro. Immunofluorescence localisation of PfCZIF1 and PfCZIF2 indicated that both proteins occur in discrete foci on the periphery of the parasite's cytosol and biochemical assays suggest they are peripherally associated to a membrane. Transcriptomic analyses for the C-terminal truncation mutants reveal no significant expression perturbations with PfCZIF1 truncation. However, modification of PfCZIF2 appears to modify the expression for some exported proteins including PfKAHRP. This study does not support a role for PfCZIF1 or PfCZIF2 in merozoite invasion of the RBC and suggests that these proteins may help regulate the expression of proteins exported into the RBC cytosol after merozoite invasion.

Keywords: Asexual; C3H1; CCCH; Malaria; Merozoite; Plasmodium falciparum; Zinc finger.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Erythrocytes / parasitology
  • Humans
  • Malaria, Falciparum* / parasitology
  • Membrane Proteins / genetics
  • Merozoites / metabolism
  • Plasmodium falciparum* / metabolism
  • Protozoan Proteins / metabolism

Substances

  • Protozoan Proteins
  • Membrane Proteins