Effects of Ziyin Qianyang Formula on Renal Fibrosis through the TGF- β 1/Smads Signaling Pathway in Spontaneously Hypertensive Rats

Evid Based Complement Alternat Med. 2022 Nov 7:2022:6088673. doi: 10.1155/2022/6088673. eCollection 2022.

Abstract

Objective: The aim of the study is to explore the effects and mechanisms of action of Ziyin Qianyang Formula (ZYQYF) on renal fibrosis in spontaneously hypertensive rats (SHRs).

Methods: Forty SHRs were randomly divided into a model group, Ziyin Qianyang Formula regular-dose and high-dose groups (ZYQYF-R, 20 g/kg; ZYQYF-H, 40 g/kg), and a western medicine group (enalapril 10 mg/kg), and 10 Sprague-Dawley rats were selected as the normal group. The rats received continuous gavage administration for 6 weeks and systolic blood pressure (SBP) measurements were obtained every fortnight. The serum levels of urea, serum creatinine (sCr), and uric acid (UA) were measured; the pathological morphology and collagen content of the kidneys were observed by hematoxylin-eosin (HE) and Masson staining; and the serum Ang II level was measured by an enzyme-linked immunosorbent assay (ELISA). Transforming growth factor (TGF)-β1, Smad-2, Smad-3, and Smad-7 protein and mRNA expressions in kidney tissues was evaluated by western blotting and reverse transcription-polymerase chain reaction.

Results: The ZYQYF-H group showed significantly a lower renal weight and renal weight/body weight than the model group. The enalapril and ZYQYF-H groups showed significantly lower SBP than other groups after 6 weeks of administration. The ZYQYF-H group showed better improvement than the ZYQYF-R and enalapril groups in glomerular and tubular morphology and better reductions in inflammatory cell infiltration and collagen volumetric fraction. The ZYQYF-H group also showed better reductions in serum UA and Ang II levels; collagen-I, collagen-III, and p-Smad2/Smad-2 protein expression; and Smad-2 mRNA expression and a better increase in Smad-7 protein and mRNA expression than the enalapril group. Besides, the degree of renal function and fibrosis improvement was positively correlated with the dose of ZYQYF.

Conclusion: ZYQYF can significantly reduce SHR blood pressure, protect renal function and structure, and improve renal fibrosis by regulating Smad proteins through TGF-β1.