Improving drought tolerance in maize: Tools and techniques

Front Genet. 2022 Oct 28:13:1001001. doi: 10.3389/fgene.2022.1001001. eCollection 2022.

Abstract

Drought is an important constraint to agricultural productivity worldwide and is expected to worsen with climate change. To assist farmers, especially in sub-Saharan Africa (SSA), to adapt to climate change, continuous generation of stress-tolerant and farmer-preferred crop varieties, and their adoption by farmers, is critical to curb food insecurity. Maize is the most widely grown staple crop in SSA and plays a significant role in food security. The aim of this review is to present an overview of a broad range of tools and techniques used to improve drought tolerance in maize. We also present a summary of progress in breeding for maize drought tolerance, while incorporating research findings from disciplines such as physiology, molecular biology, and systems modeling. The review is expected to complement existing knowledge about breeding maize for climate resilience. Collaborative maize drought tolerance breeding projects in SSA emphasize the value of public-private partnerships in increasing access to genomic techniques and useful transgenes. To sustain the impact of maize drought tolerance projects in SSA, there must be complementary efforts to train the next generation of plant breeders and crop scientists.

Keywords: drought tolerance; food security; genome mapping; genomics assisted selection; maize breeding; model-assisted approaches; plant breeding education.

Publication types

  • Review