Binding versus Enzymatic Processing of ε-Trimethyllysine Dioxygenase Substrate Analogues

ACS Med Chem Lett. 2022 Oct 21;13(11):1723-1729. doi: 10.1021/acsmedchemlett.2c00261. eCollection 2022 Nov 10.

Abstract

ε-Trimethyllysine dioxygenase (TMLD) is a non-heme Fe(II) and α-ketoglutarate dependent oxygenase that catalyzes the stereospecific hydroxylation of ε-trimethyl-l-lysine (TML) to β-hydroxy-TML during the first step of l-carnitine biosynthesis. Targeting TMLD with inhibitors is a viable strategy for the treatment of cardiovascular diseases. Herein, we report a methodology for isothermal titration calorimetry analysis of TMLD substrate analogue binding to the enzyme. Despite the high structural similarity of the tested compounds, two different binding mechanisms (enthalpy- and entropy-driven) were observed, giving insight into the ligand (substrate) selectivity of TMLD. We demonstrate that the method allows distinguishing a natural substrate-like binding mode, which correlates with the ability of the compounds to serve as substrates in the TMLD catalytic reaction.