The accuracy of using guided endodontics in access cavity preparation and the temperature changes of root surface: An in vitro study

BMC Oral Health. 2022 Nov 16;22(1):504. doi: 10.1186/s12903-022-02548-w.

Abstract

Background: Guided endodontics is a successful technique that has been gradually applied to endodontic therapy in recent years without being affected by the operator's experience. However, the guided bur produces excessive heat during continuous rotation and friction with root canal walls, it is not clear whether the degree of temperature increase may lead to the periodontal ligament and alveolar bone damage.

Methods: A total of 58 teeth were used, of which 40 teeth were not grouped, all used to evaluate the accuracy. 40 single-rooted premolars were scanned using CBCT and an intra-oral scanner, and 3D-printed guided plates were made with the pre-designed access. A custom-made guided bur was used to prepare the access cavities. The postoperative CBCT data and pre-designed pathways were matched to evaluate the deviation between the planned and virtual paths. The other 18 teeth were randomly divided into three groups (ET20 and ProTaper F3 as the control group, guided endodontics as the test group), with 6 teeth in each group. The temperature changes on the root surfaces were inspected with a thermocouple thermometer.

Results: The average deviation on the tip and the base of the bur was 0.30 mm and 0.28 mm (mesial/distal), and 0.28 mm and 0.25 mm (buccal/lingual). The average angle deviation was 3.62°. The mean root surface temperature rise of the guided endodontics group was the lowest (5.07 °C) (P < 0.05).

Conclusions: The access cavity preparation performed with guided endodontics has feasible accuracy and low-temperature rise on the root surfaces. Due to the limitations of the study, whether it has high reliability and safety in clinical applications needs to be further studied in vivo.

Keywords: Cone-beam computed tomography; Guided endodontics; Root canal preparation; Temperature.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Dental Cavity Preparation / methods
  • Endodontics*
  • Humans
  • Reproducibility of Results
  • Root Canal Therapy
  • Temperature