Dityrosine in food: A review of its occurrence, health effects, detection methods, and mitigation strategies

Compr Rev Food Sci Food Saf. 2023 Jan;22(1):355-379. doi: 10.1111/1541-4337.13071. Epub 2022 Nov 16.

Abstract

Protein and amino acid oxidation in food products produce many new compounds, of which the reactive and toxic compound dityrosine, derived from oxidized tyrosine, is the most widely studied. The high reactivity of dityrosine enables this compound to induce oxidative stress and disrupt thyroid hormone function, contributing to the pathological processes of several diseases, such as obesity, diabetes, cognitive dysfunction, aging, and age-related diseases. From the perspective of food safety and human health, protein-oxidation products in food are the main concern of consumers, health management departments, and the food industry. This review highlights the latest research on the formation pathways, toxicity, detection methods, occurrence in food, and mitigation strategies for dityrosine. Furthermore, the control of dityrosine in family cooking and food-processing industry has been discussed. Food-derived dityrosine primarily originates from high-protein foods, such as meat and dairy products. Considering its toxicity, combining rapid high sensitivity dityrosine detection techniques with feasible control methods could be an effective strategy to ensure food safety and maintain human health. However, the current dityrosine detection and mitigation strategies exhibit some inherent characteristics and limitations. Therefore, developing technologies for rapid and effective dityrosine detection and control at the industrial level is necessary.

Keywords: detection method; dityrosine; formation pathway; mitigation; oxidative stress; protein oxidation; toxicity.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Food
  • Humans
  • Oxidative Stress
  • Proteins*
  • Tyrosine* / chemistry
  • Tyrosine* / metabolism

Substances

  • dityrosine
  • Tyrosine
  • Proteins