Low-Coordinate Iron(II) Amido Half-Sandwich Complexes with Large Internal Magnetic Hyperfine Fields

Inorg Chem. 2022 Nov 28;61(47):18883-18898. doi: 10.1021/acs.inorgchem.2c02768. Epub 2022 Nov 15.

Abstract

The half-sandwich complex [Cp'Fe{N(dipp)(SiMe3)}] (Fe-dipp; Cp' = 1,2,4-tri-tert-butylcyclopentadienyl and dipp = 2,6-diisopropylphenyl) and the mixed metallocene [Cp'Fe{(η5-C6H3iPr2)═N(SiMe3)}] (Fe-chd) formed in the reaction between [{Cp'Fe(μ-I)}2] and [Li{N(dipp)(SiMe3)}]2 were characterized by NMR spectroscopy and X-ray diffraction analysis. Fe-dipp complements the series of low-coordinate, quasi-linear iron amido half-sandwich complexes [Cp'Fe{N(tBu)(SiMe3)}] (Fe-tBu) and [Cp'Fe{N(SiMe3)2}] (Fe-tms) reported earlier, and all three compounds were characterized in the solid state by zero-field 57Fe Mössbauer spectroscopy and magnetic susceptibility measurements, confirming their S = 2 electronic ground state. Moreover, the Mössbauer absorption spectra reveal slow paramagnetic relaxation at low temperatures with large internal magnetic hyperfine fields of Bhf = 96.4 T (Fe-dipp, 20 K), Bhf = 101.3 T (Fe-tBu, 15 K), and Bhf = 96.9 T (Fe-tms, 20 K). The magnetic measurements further confirm that the presence of significant axial zero-field splitting and slow relaxation of magnetization is detected, which is revealed even in the absence of a static magnetic field in the case of Fe-tBu. Supplementary ab initio and density functional theory calculations were performed and support the experimental data.