Moisture-Dependent Blinking of Individual CsPbBr3 Nanocrystals Revealed by Single-Particle Spectroscopy

J Phys Chem Lett. 2022 Nov 24;13(46):10751-10758. doi: 10.1021/acs.jpclett.2c03159. Epub 2022 Nov 14.

Abstract

All-inorganic metal halide perovskite nanocrystals (NCs) have been exceptional candidates for high-performance solution-processed optoelectronic and photonic devices compared with organometal halide perovskite NCs due to their superior stability. However, the interactions between all-inorganic perovskite NCs and moisture, which is an acknowledged detrimental factor, are still under debate, and detailed investigations to uncover such fundamentals remain to be performed. Herein, with wide-field fluorescence microscopy, the burst photoluminescence blinking responses of CsPbBr3 NCs were observed in ambient air, and moisture rather than oxygen was verified to be the key factor that leads to the enhanced PL intensity and reduced OFF duration. This behavior is rationalized through an effective passivation effect of the adsorbed water molecules on the surface halide vacancies on CsPbBr3 NCs. This work validates that ∼40% humidity atmospheres are helpful for better utilizing the all-inorganic perovskites, which is evidence of their promising prospect for application.