Genetic polymorphism and neuroanatomical changes in schizophrenia

Rom J Morphol Embryol. 2022 Apr-Jun;63(2):307-322. doi: 10.47162/RJME.63.2.03.

Abstract

The article is a review of the latest meta-analyses regarding the genetic spectrum in schizophrenia, discussing the risks given by the disrupted-in-schizophrenia 1 (DISC1), catechol-O-methyltransferase (COMT), monoamine oxidases-A∕B (MAO-A∕B), glutamic acid decarboxylase 67 (GAD67) and neuregulin 1 (NRG1) genes, and dysbindin-1 protein. The DISC1 polymorphism significantly increases the risk of schizophrenia, as well injuries from the prefrontal cortex that affect connectivity. NRG1 is one of the most important proteins involved. Its polymorphism is associated with the reduction of areas in the corpus callosum, right uncinate, inferior lateral fronto-occipital fascicle, right external capsule, fornix, right optic tract, gyrus. NRG1 and the ErbB4 receptor (tyrosine kinase receptor) are closely related to the N-methyl-D-aspartate receptor (NMDAR) (glutamate receptor). COMT is located on chromosome 22 and together with interleukin-10 (IL-10) have an anti-inflammatory and immunosuppressive function that influences the dopaminergic system. MAO gene methylation has been associated with mental disorders. MAO-A is a risk gene in the onset of schizophrenia, more precisely a certain type of single-nucleotide polymorphism (SNP), at the gene level, is associated with schizophrenia. In schizophrenia, we find deficits of the γ-aminobutyric acid (GABA)ergic neurotransmitter, the dysfunctions being found predominantly at the level of the substantia nigra. In schizophrenia, missing an allele at GAD67, caused by a SNP, has been correlated with decreases in parvalbumin (PV), somatostatin receptor (SSR), and GAD ribonucleic acid (RNA). Resulting in the inability to mature PV and SSR neurons, which has been associated with hyperactivity.

Publication types

  • Review

MeSH terms

  • Catechol O-Methyltransferase / genetics
  • Catechol O-Methyltransferase / metabolism
  • Humans
  • Monoamine Oxidase / genetics
  • Monoamine Oxidase / metabolism
  • Polymorphism, Single Nucleotide
  • Receptors, N-Methyl-D-Aspartate / genetics
  • Receptors, N-Methyl-D-Aspartate / metabolism
  • Schizophrenia* / genetics
  • Schizophrenia* / metabolism

Substances

  • Catechol O-Methyltransferase
  • Receptors, N-Methyl-D-Aspartate
  • Monoamine Oxidase