Complex 10-nm resolution nanogap and nanowire geometries for plasmonic metasurface miniaturization

Opt Express. 2022 Nov 7;30(23):42480-42494. doi: 10.1364/OE.471884.

Abstract

Emerging electromagnetic inverse design methods have pushed nanofabrication methods to their limits to extract maximum performance from plasmonic aperture-based metasurfaces. Using plasmonic metamaterial-lined apertures as an example, we demonstrate the importance of fine nanowire and nanogap features for achieving strong miniaturization of plasmonic nanoapertures. Metamaterial-lined nanoapertures are miniaturized over bowtie nanoapertures with identical minimum feature sizes by a factor of 25% without loss of field enhancement. We show that features as small as 10 nm can be reliably patterned over the wide areas required of metasurfaces using the helium focused ion beam microscope. Under imperfect fabrication conditions, we achieve 11-nm-wide nanogaps and 12-nm-wide nanowires over an area of 13 µm2, and successfully validate our results with optical characterization and comparable full-wave simulations.