Asymmetric spin splitting of Laguerre-Gaussian beams in chiral PT-symmetric metamaterials

Opt Express. 2022 Nov 7;30(23):41821-41831. doi: 10.1364/OE.475024.

Abstract

We systematically study the spin Hall effect of light (SHEL) in chiral PT-symmetric metamaterials when Laguerre Gaussian beams (LG beams) are incident and discover that cross-polarization (rs p, rp s) and intrinsic orbital angular momentum (IOAM) result in an asymmetric splitting of left-spin circularly polarized (LCP) light and right-spin circularly polarized (RCP) light. Additionally, there are spin Hall shift peaks near |rpp | ≪ |rss | (rs s and rp p are Fresnel reflection coefficients). Altering the topological charge number ℓ, the chiral parameter κ, the dimensionless frequency M, and the incident angle θ may also influence the asymmetric spin splitting and displacement peak. We believe that this research will provide new ways to manipulate and enhance the asymmetric spin splitting of light and provide new applications for spin photonic devices.