Markerless Radio Frequency Indoor Monitoring for Telemedicine: Gait Analysis, Indoor Positioning, Fall Detection, Tremor Analysis, Vital Signs and Sleep Monitoring

Sensors (Basel). 2022 Nov 4;22(21):8486. doi: 10.3390/s22218486.

Abstract

Quantitative indoor monitoring, in a low-invasive and accurate way, is still an unmet need in clinical practice. Indoor environments are more challenging than outdoor environments, and are where patients experience difficulty in performing activities of daily living (ADLs). In line with the recent trends of telemedicine, there is an ongoing positive impulse in moving medical assistance and management from hospitals to home settings. Different technologies have been proposed for indoor monitoring over the past decades, with different degrees of invasiveness, complexity, and capabilities in full-body monitoring. The major classes of devices proposed are inertial-based sensors (IMU), vision-based devices, and geomagnetic and radiofrequency (RF) based sensors. In recent years, among all available technologies, there has been an increasing interest in using RF-based technology because it can provide a more accurate and reliable method of tracking patients' movements compared to other methods, such as camera-based systems or wearable sensors. Indeed, RF technology compared to the other two techniques has higher compliance, low energy consumption, does not need to be worn, is less susceptible to noise, is not affected by lighting or other physical obstacles, has a high temporal resolution without a limited angle of view, and fewer privacy issues. The aim of the present narrative review was to describe the potential applications of RF-based indoor monitoring techniques and highlight their differences compared to other monitoring technologies.

Keywords: fall detection; gait analysis; indoor positioning; sleep monitoring; telemedicine; tremor analysis; vital signs monitoring.

Publication types

  • Review

MeSH terms

  • Activities of Daily Living
  • Gait Analysis*
  • Humans
  • Polysomnography
  • Telemedicine*
  • Tremor
  • Vital Signs

Grants and funding

This research received no external funding.