The Effects of Temperature and Water on the Seed Germination and Seedling Development of Rapeseed (Brassica napus L.)

Plants (Basel). 2022 Oct 23;11(21):2819. doi: 10.3390/plants11212819.

Abstract

The seed germination and seedling growth of rapeseed are crucial stages in plant life, especially when facing abiotic stresses. In the present work, the effects of water and temperature on seed germination and seedling growth were investigated in a rapeseed crop (Brassica napus L.). The plants were examined under different temperature levels (5 °C, 10 °C, 15 °C, 20 °C, 25 °C, 30 °C, and 35 °C) and water levels (twenty-nine levels based on either one-milliliter intervals or as a percentage of the thousand-kernel weight (TKW)). Moreover, planting densities and antifungal application techniques were investigated in the study. The findings demonstrated substantial variations between all the growth parameters investigated at all the tested temperatures, and 20 °C was considered the optimum within a broad range of 15-25 °C. Water availability plays a significant role in germination, which can be initiated at 0.65 mL, corresponding to 500% of the TKW. The method of TKW is a more accurate aspect of water application because of the consideration of the seed weight and size. The optimal water range for the accumulation of dry weight, 3.85-5.9 mL (2900-4400% of TKW), was greater than that required for seedling growth, 1.45-3.05 mL (1100-2300% of TKW). Twenty to twenty-five seeds per 9 cm Petri dish exhibited the most outstanding values compared to the others, which provides an advantage in breeding programs, especially when there are seed limitations. Seed priming is a more effective antifungal application strategy. These data can be incorporated into future rapeseed germination in vitro studies, breeding programs, and sowing date predictions.

Keywords: abiotic stresses; germination test; oilseed rape; priming; seed number; temperature; water.

Grants and funding

This research was funded by the Hungarian University of Agriculture and Life Sciences. Stipendium Hungaricum Foundation supported it.