Recent Development of Carbon-Nanotube-Based Solar Heat Absorption Devices and Their Application

Nanomaterials (Basel). 2022 Nov 2;12(21):3871. doi: 10.3390/nano12213871.

Abstract

Population growth and the current global weather patterns have heightened the need to optimize solar energy harvesting. Solar-powered water filtration, electricity generation, and water heating have gradually multiplied as viable sources of fresh water and power generation, especially for isolated places without access to water and energy. The unique thermal and optical characteristics of carbon nanotubes (CNTs) enable their use as efficient solar absorbers with enhanced overall photothermal conversion efficiency under varying solar light intensities. Due to their exceptional optical absorption efficiency, low cost, environmental friendliness, and natural carbon availability, CNTs have attracted intense scientific interest in the production of solar thermal systems. In this review study, we evaluated CNT-based water purification, thermoelectric generation, and water heating systems under varying solar levels of illumination, ranging from domestic applications to industrial usage. The use of CNT composites or multilayered structures is also reviewed in relation to solar heat absorber applications. An aerogel containing CNTs was able to ameliorate water filtering performance at low solar intensities. CNTs with a Fresnel lens improved thermoelectric output power at high solar intensity. Solar water heating devices utilizing a nanofluid composed of CNTs proved to be the most effective. In this review, we also aimed to identify the most relevant challenges and promising opportunities in relation to CNT-based solar thermal devices.

Keywords: CNTs; energy storage; solar heat absorption; steam generator; thermoelectric generator; water heater.

Publication types

  • Review

Grants and funding

This research received no external funding.