Synthesis and Spectroscopic Characterization of Selected Phenothiazines and Phenazines Rationalized Based on DFT Calculation

Molecules. 2022 Nov 4;27(21):7519. doi: 10.3390/molecules27217519.

Abstract

Two unique structures were isolated from the phosphorylation reaction of 10H-phenothiazine. The 5,5-dimethyl-2-(10H-phenothiazin-10-yl)-1,3,2-dioxaphosphinane 2-oxide (2a) illustrates the product of N-phosphorylation of phenothiazine. Moreover, a potential product of 2a instability, a thiophosphoric acid 2b, was successfully isolated and structurally characterized. Molecule 2a, similarly to sulfoxide derivative 3, possesses interesting phosphorescence properties due to the presence of d-pπ bonds. The X-ray, NMR, and DFT computational studies indicate that compound 2a exhibits an anomeric effect. Additionally, the syntheses of selected symmetrical and unsymmetrical pyridine-embedded phenazines were elaborated. To compare the influence of phosphorus and sulfur atoms on the structural characteristics of 10H-phenothiazine derivatives, the high-quality crystals of (4a,12a-dihydro-12H-benzo[5,6][1,4]thiazino[2,3-b]quinoxalin-12-yl)(phenyl)methanone (1) and selected phenazines 5,12-diisopropyl-3,10-dimethyldipyrido[3,2-a:3',2'-h]phenazine (5) and 5-isopropyl-N,N,3-trimethylpyrido[3,2-a]phenazin-10-amine (6a) were obtained. The structures of molecules 1, 2a, 2-mercapto-5,5-dimethyl-1,3,2-dioxaphosphinane 2-oxide (2b), 3,7-dinitro-10H-phenothiazine 5-oxide (3), 5 and 6a were determined by single-crystal X-ray diffraction measurements.

Keywords: DFT studies; anomeric effect; heterocyclic; phenazine; phenothiazine; phosphorescence; phosphorylation.

MeSH terms

  • Density Functional Theory
  • Magnetic Resonance Spectroscopy
  • Oxides
  • Phenazines*
  • Phenothiazines* / chemistry

Substances

  • phenothiazine
  • Phenothiazines
  • Phenazines
  • Oxides