Numerical Investigation on the Heat and Mass Transfer in Microchannel with Discrete Heat Sources Considering the Soret and Dufour Effects

Micromachines (Basel). 2022 Oct 28;13(11):1848. doi: 10.3390/mi13111848.

Abstract

Heat-transfer enhancement in microchannel heat sinks (MCHS) has been a hot topic in the last decade. However, most published works did not focus on the heat sources that are discrete, as in most microelectronic devices, and the enhancement of heat and mass transfer (HMT) due to the Soret and Dufour effects being ignored. Based on a heterogeneous two-phase model that takes into consideration the Soret and Dufour effects, numerical simulations have been performed for various geometries and heat sources. The numerical results demonstrate that the vortices induced by a heat source(s) can enhance the heat transfer efficiency up to 2665 W/m2·K from 2618 W/m2·K for a discrete heat source with a heat flux q = 106 W/m2. The Soret effect can affect the heat transfer much more than the Duffour effect. The integrated results for heat transfer due to the Soret and Dufour effects are not sampled superpositions. Discrete heat sources (DHS) arranged in microchannels can enhance heat transfer, especially when the inlet velocity of the forced flow is less than 0.01 m/s. This can provide a beneficial reference for the design of MCHS with DHS.

Keywords: Dufour effect; Soret effect; discrete heat sources; heat and mass transfer; micro-channel heat sink.