Cost-Effective Design of a Miniaturized Zoom Lens for a Capsule Endoscope

Micromachines (Basel). 2022 Oct 24;13(11):1814. doi: 10.3390/mi13111814.

Abstract

This paper presents a miniaturized design of a 2× zoom lens for application to a one-megapixel image sensor in a capsule endoscope. The zoom lens is composed of four lenses, including three plastic aspheric lenses and one glass spherical lens, and adopts a three-lens group design. This capsule endoscope is mainly for observation of the small intestine, which has a radius of about 12.5 mm. The height of the object is thus set to 12.5 mm. The object surface is designed to be curved surface with a radius of curvature of 15 mm. The focal length of the zoom lens ranges from 1.064 mm to 2.039 mm, and the full angle of view ranges from 60° to 143°, the f-number is F/2.8-F/3.5, the zoom lens is 11.6 mm in length, and the maximum effective diameter of the zoom lens is 6 mm. The zoom lens design is divided into six segments, corresponding to the different magnifications from Zoom 1 to Zoom 6. The magnification ratios are -0.0845, -0.0984, -0.1150, -0.1317, -0.1482, and -0.1690, respectively. Comparing the positions from Zoom 1 to Zoom 6, the maximum optical distortion is -14.89% for the Zoom 1 and 1.45% for the Zoom 6. The maximum vertical video distortion is 8.19% for Zoom 1 and 1.00% for Zoom 6. At a 1.0 field of view, the minimum relative illuminance is 71.8% at a magnification of M = -0.1317. Finally, we perform the tolerance analysis and lens resolution analysis at different zooming positions. Our design can obtain high-quality images for capsule endoscope.

Keywords: capsule endoscopy; optimization design; relative illuminance; zoom lens.

Grants and funding

This research was supported in part by the National Science and Technology of Council, under project numbers MOST 110-2221-E-008-072 and 111-2622-E-035-003. This study was also supported by Feng Chia University (Contract No. 21H00723).