Mechanism Analysis of Nanosecond Pulse Laser Etching of SiCp/Mg Composites

Materials (Basel). 2022 Oct 31;15(21):7654. doi: 10.3390/ma15217654.

Abstract

Due to the introduction of silicon carbide reinforcement, the physical and cutting properties of SiCp/Mg composites are very different from those of metal composites. Nanosecond pulse laser processing is more efficient than traditional processing for SiCp/Mg composites. A low-power pulsed fiber laser was used to etch 3.0 mm thick SiCp/Mg composites. The effect of low laser power (0~50 W) on the morphology and heat-affected zone of the SiCp/Mg composite after etching was studied. The results show that when the laser power increases, the material accumulation at the ablation end of the machining surface becomes more and more serious. With the increase in power, the differences in ablation width and ablation depth on the surface of composite materials do not increase proportionally. When the laser power increases gradually, the width of the heat-affected zone increases in the direction of the perpendicular laser beam and reaches the maximum value at the etched end.

Keywords: SiCp/Mg composites; heat-affected zone; laser etching; surface morphology.