Morphology and Anti-Corrosive Performance of Cr(III) Passivated Zn-Fe Alloy Coating on NdFeB Substrate

Materials (Basel). 2022 Oct 27;15(21):7523. doi: 10.3390/ma15217523.

Abstract

In this study, low-iron Zn-Fe alloy coatings and pure Zn coatings, with or without trivalent chromium passivation treatment, were electrodeposited onto a sintered NdFeB magnet from a weak acid chloride bath. The surface morphology and structure of the coatings were then examined using the X-ray diffraction, a scanning electron microscope and 3D white-light interfering surface analysis. Meanwhile, the electrodeposition behavior and anti-corrosive properties of the coatings were investigated using cyclic voltammetry, potentiodynamic polarization, electrochemical impedance spectroscopy, and natural salt spray tests. The results indicate that a passivated Zn-Fe alloy coating with a 0.9 wt.% Fe content provided much better corrosion resistance than a pure Zn coating and could provide both anodic protection and physical barrier function in the NdFeB substrates. The Fe element in Zn-Fe alloy coating was predominantly in solid solution in η-phase and small amounts in elemental form, which was beneficial to acquire a compact coating and passivation film. Finally, the passivated Zn-Fe alloy coating withstood 210 h against a neutral 3.5 wt.% NaCl salt spray without any white rust, which was 3-4 times longer than the pure Zn coating.

Keywords: Nd-Fe-B; Zn–Fe alloy coatings; corrosion resistance; pure Zn coatings; trivalent chromium passivation.

Grants and funding

This research received no external funding.