The Influence of Air Nanobubbles on Controlling the Synthesis of Calcium Carbonate Crystals

Materials (Basel). 2022 Oct 23;15(21):7437. doi: 10.3390/ma15217437.

Abstract

Numerous approaches have been developed to control the crystalline and morphology of calcium carbonate. In this paper, nanobubbles were studied as a novel aid for the structure transition from vaterite to calcite. The vaterite particles turned into calcite (100%) in deionized water containing nanobubbles generated by high-speed shearing after 4 h, in comparison to a mixture of vaterite (33.6%) and calcite (66.3%) by the reaction in the deionized water in the absence of nanobubbles. The nanobubbles can coagulate with calcite based on the potential energy calculated and confirmed by the extended DLVO (Derjaguin-Landau-Verwey-Overbeek) theory. According to the nanobubble bridging capillary force, nanobubbles were identified as the binder in strengthening the coagulation between calcite and vaterite and accelerated the transformation from vaterite to calcite.

Keywords: calcium carbonate; capillary force; crystal-control; extended DLVO theory; nanobubbles; transformation.