Changes in Microeukaryotic Communities in the Grand Canal of China in Response to Floods

Int J Environ Res Public Health. 2022 Oct 27;19(21):13948. doi: 10.3390/ijerph192113948.

Abstract

Floods are frequent natural disasters and could have serious impacts on aquatic environments. Eukaryotic communities in artificial canals influenced by floods remain largely unexplored. This study investigated the spatiotemporal variabilities among eukaryotes in response to floods in the Grand Canal, China. Generally, 781,078 sequence reads were obtained from 18S rRNA gene sequencing, with 304,721 and 476,357 sequence reads detected before and after flooding, respectively. Sediment samples collected after the floods exhibited a higher degree of richness and biodiversity but lower evenness than those before the floods. The eukaryotic communities changed from Fungi-dominated before floods to Stramenopile-dominated after floods. The spatial turnover of various species was the main contributor to the longitudinal construction of eukaryotes both before the floods (βSIM = 0.7054) and after the floods (βSIM = 0.6858). Some eukaryotic groups responded strongly to floods and might pose unpredictable risks to human health and environmental health. For example, Pezizomycetes, Catenulida, Glomeromycetes, Ellipura, etc. disappeared after the floods. Conversely, Lepocinclis, Synurale, Hibberdiales, Acineta, Diptera, and Rhinosporidium were all frequently detected after the floods, but not prior to the floods. Functional analyses revealed amino acid metabolism, carbohydrate metabolism, translation, and energy metabolism as the main metabolic pathways, predicting great potential for these processes in the Grand Canal.

Keywords: assembly mechanics; distribution and structure; eukaryotic communities; flood influence; functional analysis; the Grand Canal.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biodiversity*
  • China
  • Eukaryota
  • Floods*
  • Humans

Grants and funding

This work was supported by the National Natural Science Foundation of China (no. 51909229, 52200205 and 42177365); Yangzhou Lvyangjinfeng Talent Program; the Open Research Fund Program of Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education of Hohai University, the Science and Technology Innovation Fund for College Students of Yangzhou University.