Clinically Relevant β-Lactam Resistance Genes in Wastewater Treatment Plants

Int J Environ Res Public Health. 2022 Oct 24;19(21):13829. doi: 10.3390/ijerph192113829.

Abstract

Antimicrobial resistance (AMR) is one of the largest global concerns due to its influence in multiple areas, which is consistent with One Health's concept of close interconnections between people, animals, plants, and their shared environments. Antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) circulate constantly in various niches, sediments, water sources, soil, and wastes of the animal and plant sectors, and is linked to human activities. Sewage of different origins gets to the wastewater treatment plants (WWTPs), where ARB and ARG removal efficiency is still insufficient, leading to their transmission to discharge points and further dissemination. Thus, WWTPs are believed to be reservoirs of ARGs and the source of spreading AMR. According to a World Health Organization report, the most critical pathogens for public health include Gram-negative bacteria resistant to third-generation cephalosporins and carbapenems (last-choice drugs), which represent β-lactams, the most widely used antibiotics. Therefore, this paper aimed to present the available research data for ARGs in WWTPs that confer resistance to β-lactam antibiotics, with a particular emphasis on clinically important life-threatening mechanisms of resistance, including extended-spectrum β-lactamases (ESBLs) and carbapenemases (KPC, NDM).

Keywords: antibiotic resistance genes; carbapenemases; extended-spectrum β-lactamase; wastewater treatment plant; β-lactamase.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angiotensin Receptor Antagonists*
  • Angiotensin-Converting Enzyme Inhibitors
  • Animals
  • Anti-Bacterial Agents / pharmacology
  • Genes, Bacterial
  • Humans
  • Wastewater / microbiology
  • Water Purification*
  • beta-Lactam Resistance / genetics
  • beta-Lactamases / genetics

Substances

  • Angiotensin Receptor Antagonists
  • Anti-Bacterial Agents
  • Angiotensin-Converting Enzyme Inhibitors
  • beta-Lactamases
  • Waste Water

Grants and funding

This work was financed by internal funding (DS 8/2022) from the National Medicines Institute.