The Interplay of Epigenetic, Genetic, and Traditional Risk Factors on Blood Pressure: Findings from the Health and Retirement Study

Genes (Basel). 2022 Oct 27;13(11):1959. doi: 10.3390/genes13111959.

Abstract

The epigenome likely interacts with traditional and genetic risk factors to influence blood pressure. We evaluated whether 13 previously reported DNA methylation sites (CpGs) are associated with systolic (SBP) or diastolic (DBP) blood pressure, both individually and aggregated into methylation risk scores (MRS), in 3070 participants (including 437 African ancestry (AA) and 2021 European ancestry (EA), mean age = 70.5 years) from the Health and Retirement Study. Nine CpGs were at least nominally associated with SBP and/or DBP after adjusting for traditional hypertension risk factors (p < 0.05). MRSSBP was positively associated with SBP in the full sample (β = 1.7 mmHg per 1 standard deviation in MRSSBP; p = 2.7 × 10-5) and in EA (β = 1.6; p = 0.001), and MRSDBP with DBP in the full sample (β = 1.1; p = 1.8 × 10-6), EA (β = 1.1; p = 7.2 × 10-5), and AA (β = 1.4; p = 0.03). The MRS and BP-genetic risk scores were independently associated with blood pressure in EA. The effects of both MRSs were weaker with increased age (pinteraction < 0.01), and the effect of MRSDBP was higher among individuals with at least some college education (pinteraction = 0.02). In AA, increasing MRSSBP was associated with higher SBP in females only (pinteraction = 0.01). Our work shows that MRS is a potential biomarker of blood pressure that may be modified by traditional hypertension risk factors.

Keywords: DNA methylation; blood pressure; genetic risk score; genetics; interaction; methylation risk score.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Blood Pressure / genetics
  • Epigenesis, Genetic
  • Female
  • Humans
  • Hypertension* / genetics
  • Retirement*
  • Risk Factors