Identification and Expression Profiling of Two Saudi Arabia Catalase Genes from Wheat and Barley in Response to Abiotic and Hormonal Stresses

Antioxidants (Basel). 2022 Nov 8;11(11):2208. doi: 10.3390/antiox11112208.

Abstract

Catalase is a crucial enzyme in antioxidant defense systems protecting eukaryotes from oxidative stress. These proteins are present in almost all living organisms and play important roles in controlling plant responses to biotic and abiotic stresses by catalyzing the decomposition of H2O2. Despite their importance, little is known about their expression in the majority of monocotyledonous species. Here, we isolated and characterized two novel catalase genes from Triticum turgidum and Hordeum vulgare, designated as TtCAT1 and HvCAT1, respectively. Phylogenetic analysis revealed that TtCAT1 and HvCAT1 presented 492 aa and shared an important identity with other catalase proteins belonging to subfamily 1. Using bioinformatic analysis, we predicted the 3D structure models of TtCAT1 and HvCAT1. Interestingly, analysis showed that the novel catalases harbor a peroxisomal targeting signal (PTS1) located at their C-terminus portion, as shown for other catalase proteins. In addition, this motif is responsible for the in silico peroxisomal localization of both proteins. Finally, RT-qPCR analysis showed that TtCAT1 and HvCAT1 are highly expressed in leaves in normal conditions but faintly in roots. Moreover, both genes are upregulated after the application of different stresses such as salt, osmotic, cold, heavy metal, and hormonal stresses. The positive responses of TtCAT1 and HvCAT1 to the various stimuli suggested that these proteins can help to protect both species against environmental stresses.

Keywords: 2D structure; antioxidant enzymes; bioinformatic analysis; catalase; oxidative stress; peroxisomal targeting signal.