Hydrophilic Composites of Chitosan with Almond Gum: Characterization and Mechanical, and Antimicrobial Activity for Compostable Food Packaging

Antibiotics (Basel). 2022 Oct 28;11(11):1502. doi: 10.3390/antibiotics11111502.

Abstract

To enhance the characteristics of the biocomposite film, solution cast was used to incorporate almond gum at different concentrations (10.0, 30.0, and 50.0%). The functional groups and morphology were determined using FTIR and SEM. The thermal property of chitosan and its composites materials were determined via TGA. In this study, the incorporation of almond gum into the chitosan matrix resulted in good mechanical strength, film thickness, and low barrier and solubility characteristics. Water vapor transmission rate (WVTR) and oxygen transmission rate (OTR) of the composites films was also investigated. The WVTR and OTR values for the chitosan/almond gum (CSA) composite film values are 11.6 ± 1.62 (g/m2/day) and 32.9 ± 1.95(cc/m2/24 h),respectively. The obtained composites show significantly improved antimicrobial activity against Gram-negative (E. coli) and Gram-positive (S. aureus) food-borne pathogenic bacteria. The results suggest that the CSA composites may serve as a promising candidate for antimicrobial food packaging materials. After an observation of the test results, it is inferred that the CSA composites bear good mechanical and antimicrobial activity and also show enhanced morphological characteristics.

Keywords: almond gum; antimicrobial activities; chitosan; mechanical strength; micro-structure.