Effect of an Eco-Friendly Cuminaldehyde Guanylhydrazone Disinfectant on Shiga Toxin Production and Global Transcription of Escherichia coli

Toxins (Basel). 2022 Nov 2;14(11):752. doi: 10.3390/toxins14110752.

Abstract

Antimicrobials have been important medicines used to treat various infections. However, some antibiotics increase the expression of Shiga toxin (Stx). Also, the pervasive use of persistent antibiotics has led to ecotoxicity and antibiotic resistance. In this study, a newly developed broad-spectrum and reversible antibiotic (guanylhydrazone disinfectant) was evaluated for its antibiotic activity and effects on Stx production and global transcription of bacteria. No Stx induction was observed in 25 Shiga toxin-producing E. coli (STEC) isolates treated with a sublethal concentration of the guanylhydrazone. A differential gene expression study comparing two guanylhydrazone-treated to non-treated E. coli strains indicated that the expression of a group of stress-responsive genes were enhanced. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that guanylhydrazone treatment significantly downregulated the pathways of ribosome and flagellar assembly in both pathogenic and non-pathogenic strains and differentially regulated some pathways essential for bacteria to maintain cell shape and gain survival advantage in two strains. In addition, upregulation of antibiotic resistant genes related to the multidrug efflux system and virulence genes coding for colibactin, colicin, and adhesin was observed in strains treated with the disinfectant. The knowledge obtained in this study contributes to our understanding of the mode of this disinfectant action and facilitates our effort to better use disinfectants for STEC treatments.

Keywords: Escherichia coli; Shiga toxin-producing E. coli; disinfectant; reversible antimicrobial guanylhydrazone; transcriptome analysis.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Disinfectants* / pharmacology
  • Escherichia coli Infections* / microbiology
  • Escherichia coli Proteins* / genetics
  • Humans
  • Shiga Toxin / genetics
  • Shiga-Toxigenic Escherichia coli* / genetics
  • Virulence Factors / genetics

Substances

  • cuminaldehyde
  • Disinfectants
  • Escherichia coli Proteins
  • Virulence Factors
  • Shiga Toxin
  • Anti-Bacterial Agents

Grants and funding

This research was supported by USDA-ARS National Program 108, CRIS project 2030-42000-053-00D.