Mesoporous WS2-Decorated Cellulose Nanofiber-Templated CuO Heterostructures for High-Performance Chemiresistive Hydrogen Sulfide Sensors

Anal Chem. 2022 Nov 22;94(46):16160-16170. doi: 10.1021/acs.analchem.2c03596. Epub 2022 Nov 10.

Abstract

There is a great demand to develop high-performance hydrogen sulfide (H2S) sensors, especially at the trace level for environmental protection, human healthcare, and food freshness monitoring. To this end, cellulose nanofiber (CNF)-templated CuO (CuO-C) was decorated with tungsten disulfide (WS2) nanosheets (W-Cu-C) as the sensing layer of chemiresistive microelectromechanical system (MEMS) sensors for H2S recognition in this work. As compared to pristine CuO counterparts at 160.5 °C, the as-prepared W-Cu-C-10 sensors delivered a 30-fold enhanced response of 37 toward 0.5 ppm H2S at a lower optimal operation temperature of 100.1 °C. Moreover, a fast response/recovery speed of 37.2/33.9 s toward 0.5 ppm H2S and excellent long-term stability and selectivity were achieved. Compared with existing research and commercial products, the W-CU-C-10 sensors exhibited the remarkable superiorities of high sensitivity, the lowest detection limit of 200 ppb, and ultralow power consumption (8 mW). Also, the sensor showcased a nice on-site application potential for evaluating eggs' freshness. The proposed W-Cu-C-10 sensors probably pave a new avenue for designing high-sensitivity and energy-efficient future H2S sensors, especially in the fields of portable and wearable detection systems as well as Internet of Things.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cellulose
  • Humans
  • Hydrogen Sulfide*
  • Nanofibers*

Substances

  • Hydrogen Sulfide
  • cupric oxide
  • tungsten sulfide
  • Cellulose