Whole-genome sequencing of artificial single-nucleotide variants induced by DNA degradation in biological crime scene traces

Int J Legal Med. 2023 Jan;137(1):33-45. doi: 10.1007/s00414-022-02911-0. Epub 2022 Nov 10.

Abstract

The aim of this study was to identify artificial single-nucleotide variants (SNVs) in degraded trace DNA samples. In a preliminary study, blood samples were stored for up to 120 days and whole-genome sequencing was performed using the Snakemake workflow dna-seq-gatk-variant-calling to identify positions that vary between the time point 0 sample and the aged samples. In a follow-up study on blood and saliva samples stored under humid and dry conditions, potential marker candidates for the estimation of the age of a blood stain (= time since deposition) were identified. Both studies show that a general decrease in the mean fragment size of the libraries over time was observed, presumably due to the formation of abasic sites during DNA degradation which are more susceptible to strand breaks by mechanical shearing of DNA. Unsurprisingly, an increase in the number of failed genotype calls (no coverage) was detected over time. Both studies indicated the presence of artificial SNVs with the majority of changes happening at guanine and cytosine positions. This confirms previous studies and can be explained by depurination through hydrolytic attacks which more likely deplete guanine while deamination leads to cytosine to thymine variants. Even complete genotype switches from homozygote 0/0 genotypes to the opposite 1/1 genotypes were observed. While positions with such drastic changes might provide suitable candidate markers for estimating short-term time since deposition (TsD), 11 markers were identified which show a slower gradual change of the relative abundance of the artificial variant in both blood and saliva samples, irrespective of storage conditions.

Keywords: Crime scene trace; DNA degradation; Time since deposition; Whole-genome sequencing.

MeSH terms

  • Aged
  • DNA*
  • Follow-Up Studies
  • Genotype
  • High-Throughput Nucleotide Sequencing
  • Humans
  • Nucleotides*
  • Polymorphism, Single Nucleotide
  • Whole Genome Sequencing

Substances

  • DNA
  • Nucleotides