Spatial patterns in water quality and source apportionment in a typical cascade development river southwestern China using PMF modeling and multivariate statistical techniques

Chemosphere. 2023 Jan;311(Pt 2):137139. doi: 10.1016/j.chemosphere.2022.137139. Epub 2022 Nov 5.

Abstract

River cascade development is one of the human activities that have the most significant impact on the water environment. However, the mechanism of cascade development affecting river hydrochemical components still needs to be further studied. In this study, water quality index(WQI), positive matrix factorization(PMF) model and multivariate statistical techniques were used to identify the mechanism of cascade development affecting river hydrochemical components in an typical cascade development Rivers, Lancang River, China. The results showed that the water quality of Lancang River is relatively good due to less affected by human activity. The spatial variation of river hydrochemistry is affected by the development of cascade reservoirs, and shows three patterns: irregular variation (pH and DO), fluctuating decreasing (Na+, Cl-, SO42- and HCO3-) and multi-peak variation (TN, TDN, NO3--N and NH4+-N). It's worth noting that the concentration of the most hydrochemical parameters is higher in the upper reaches (less human activities) than that in the middle and lower reaches of river due to the retention effect of the reservoir on the chemical composition. The PMF model outputs revealed that the rock weathering and internal source, sewage and soil nitrogen, and chemical fertilizer were primary material sources of Lancang River. Compared with the natural channel zone (41.0%), the interaction of water-rock has more influence on chemical component in the reservoir area (56.3%), while the contribution of fertilizer (11.2%) to the river hydrochemistry is less. The sites of downstream of the reservoir dam were affected by the retention of the reservoir and the disturbance of the bottom drainage, which leads to the weakening of the influence of the sewage (44.7%) on the river material and the increase of the contribution of fertilizer (25.0%). These results could provide valuable information in controlling the eutrophication of cascade reservoirs and the scientific construction of river cascade reservoirs.

Keywords: Cascade development; Retention effect; Source apportionment; Spatial variation; Water quality.