Surface Modification of Ultrafiltration Membranes with 1,4-Benzoquinone and Polyetheramines to Improve Fouling Resistance

ACS Appl Mater Interfaces. 2022 Nov 23;14(46):52390-52401. doi: 10.1021/acsami.2c14884. Epub 2022 Nov 8.

Abstract

Membrane fouling remains a key challenge for membrane separations. Hydrophilic membrane surface modification can mitigate irreversible foulant deposition, thereby improving fouling resistance. We report new hydrophilic membrane coatings based on 1,4-benzoquinone and various commercially available polyetheramines. These coatings, prepared from 1,4-benzoquinone and Jeffamine EDR 148, poly(benzoquinone-Jeffamine EDR 148) (p(BQ-EDR 148)), were used to modify polysulfone (PS) ultrafiltration membranes. In fouling experiments using an oil/water emulsion, membranes exhibited comparable fouling resistance to that of polydopamine (pDA)-modified membranes. Based on contact angle measurements, p(BQ-EDR 148) and pDA-modified membranes have similar levels of hydrophilicity, and both exhibited higher threshold flux values than those of their unmodified analogues. Based on their similar threshold flux values, p(BQ-EDR 148)-modified (76 LMH) and pDA-modified membranes (74 LMH) should have similar fouling resistance. Moreover, the mean pore size of p(BQ-EDR 148)-modified membranes can be tuned, while keeping the pure water permeance constant, by changing the deposition time and molar ratio of benzoquinone to EDR 148 in the modification solution.

Keywords: Jeffamine; antifouling; benzoquinone; polydopamine; surface modification; threshold flux; ultrafiltration.