Advancements and Challenges in Reductive Conversion of Carbon Dioxide via Thermo-/Photocatalysis

J Org Chem. 2023 Apr 21;88(8):4942-4964. doi: 10.1021/acs.joc.2c02179. Epub 2022 Nov 7.

Abstract

Carbon dioxide (CO2) is the major greenhouse gas and also an abundant and renewable carbon resource. Therefore, its chemical conversion and utilization are of great attraction for sustainable development. Especially, reductive conversion of CO2 with energy input has become a current hotspot due to its ability to access fuels and various important chemicals. Nowadays, the controllable CO2 hydrogenation to formic acid and alcohols using sustainable H2 resources has been regarded as an appealing solution to hydrogen storage and CO2 accumulation. In addition, photocatalytic CO2 reduction to CO also provides a potential way to utilize this greenhouse gas efficiently. Besides direct CO2 hydrogenation, CO2 reductive functionalization integrates CO2 reduction with subsequent C-X (X = N, S, C, O) bond formation and indirect transformation strategies, enlarging the diverse products derived from CO2 and promoting CO2 reductive conversion into a new stage. In this Perspective, the progress and challenges of CO2 reductive conversion, including hydrogenation, reductive functionalization, photocatalytic reduction, and photocatalytic reductive functionalization are summarized and discussed along with the key issues and future trends/directions in this field. We hope this Perspective can evoke intense interest and inspire much innovation in the promise of CO2 valorization.

Publication types

  • Review