Fire regime of peatlands in the Angolan Highlands

Environ Monit Assess. 2022 Nov 7;195(1):78. doi: 10.1007/s10661-022-10704-6.

Abstract

The Angolan Highlands region includes the Angolan miombo woodland ecoregion which supports miombo woodland, grasslands, subsistence agricultural land, and peatland deposits. Extensive fires, slash and burn agriculture, peat fuel extraction, and peatland drainage are among the anthropogenic practices that threaten these peatland deposits. Peat fires cause peatland degradation, release significant amounts of greenhouse gases, deteriorate air quality, and contribute towards climate change and biodiversity loss. This study presents an analysis of the fire regimes over the period 2001 to 2020 in an under-studied area of the Angolan Highlands. Moderate Resolution Imaging Spectroradiometer (MODIS) fire and vegetation data were used in combination with a land use/land cover (LULC) classification map to calculate fire frequency, burn area, and fire regimes. The fire patterns within the study site are comparable to those found in African woodland savannas. Across the study site, 6976 km2 (11.31%) of the land surface area burned at least nine times from 2001 to 2020, occurring largely within in the river valley environment. Considering the different LULC classes, peatlands were calculated to (a) burn more frequently (average fire frequency from 2001 to 2020 = 9.12), (b) have the smallest proportion (4.11%) of area which remained unburnt over the fire archive, and (c) have the largest average proportion (45.65% or 746 km2) of burnt area per year. Peatland burning occurred predominantly during drier months from May to September. The results of this study highlight the strong influence of LULC on the fire frequency and distribution in the study area, requiring unique fire management strategies. As has been documented for boreal and tropical peatlands across the globe, we stress the importance of peatland conservation and protection; continued unsustainable management practices may lead to the loss of these important peatland deposits.

Keywords: Carbon; Google Earth Engine; Land use/land cover; Normalised Difference Vegetation Index; Okavango; Remote sensing.

MeSH terms

  • Biodiversity
  • Ecosystem
  • Environmental Monitoring*
  • Fires*
  • Forests
  • Soil

Substances

  • Soil